
On the concepts of Lie and covariant derivatives of spinors. III. Comparison with the invariant

formalism

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 1047

(http://iopscience.iop.org/0305-4470/28/4/026)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 01:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I .  Phys. A: Math. Gen. 28 (1995) 1047-1054. Printed in the UK 

On the concepts of Lie and covariant derivatives of spinors: 
part III. Comparison with the invariant formalism 

D J Hurleyt and M A Vandyckts 
t Mathematics Department, University College Cork, Cork City, Ireland 
$ Physics Depmment, University College Cork, Cork City, Ireland 
and Physics Department, Cork Regional Technical College, Bishopstown, CO Cork, Ireland 

Received 24 October 1994 

Abstract. The general method for defining the Lie and covariant derivatives of a spinor field, 
presented in parts I and 11, is compared with that provided by BuchdaN’s ‘invariant formalism’. 
The results are found to beessentially in agreement (where the invariant formalism is applicable). 

1. Introduction 

In this series of articles, we are considering the problem of covariant derivatives of spinor 
fields in spaces with a general connection. (This work can also be interpreted as a study 
of Lie differentiation of spinor fields along arbitrary vector fields.) In part I, we presented 
our definition [I] of thecovariant derivative, and in part II we analysed it [2] .  In particular, 
it was emphasized how our formalism is compatible with tensor calculus in full ganerality, 
i.e. without restktion on the spacetime connection, whereas other frameworks (e.g. [3-5]) 
are confined to special cases. 

When the spacetime connection happens to be conformal, a~framework different from 
all the previous ones was introduced by Buchdahl [6,7] in 1992. It uses the concept of 
‘gauge and phase invariance’ of a spinor field, and will therefore be referred to here as 
the ‘invariant formalism’. Given that our definition is valid in full~generality, it should be 
possible to relate it, in the conformal case, to the invariant formalism. The present article, 
part JII, is devoted to investigating this relationship. 

We shall see that the ‘gauge ind phase weights’ of the invariant formalism are closely 
related to the parameter k appearing in our framework. (See (2.2) of part II.) Moreover, 
it will become clear that, if the weights are suitably chosen, the invariant formalism is 
equivalent to ours (in the special case where the invariant formalism is applicable). These 
considerations will be presented in section 3. 

The invariant formalism also introduces a particular modification of the definition of 
the covariant derivative of tensors, whereas we retain the conventional tensorial definition 
and construct a definition of the covariant derivative of spinor fields compatible with the 
conventional tensorial derivative. (Details are found in section 5 of part 11.) This important 
difference sheds light on the invariant formalism, and this question will be examined in 
section 4. 

In order to recast the invariant formalism into our general framework and notation, we 
shall also present, in section 2, a summary of the invariant formalism. We shall emphasize 
the aspects which will be of relevance for our later considerations. 
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2. The invariant formalism 

The purpose of the invariant formalism [7] is to introduce definitions of the covariant 
derivatives of tensors and spinors which are consistent and convenient in spaces having a 
conformal connection, i.e. in Weyl spaces. (For details of the motivation for the invariant 
formalism, see [7].) Weyl spaces are special cases of those considered in parts I and 11, and 
therefore it is useful to recall here, in the special case, the general definitions of part I. 

An arbitrary connection r defined on a manifold exhibits in general torsion ( T ) ,  
curvature (R) ,  and non-metricity ( H ) .  If V, e(&), and e(&) denote, respectively, the covariant 
derivative, an arbitrary basis in the tangent space and the dual of this basis, one may define 
the relevant quantities as 

D J Hurley and M A Vmdyck 

where X ,  Y, Z are vector fields and g is the metric. (The definition of the curvature R will 
not be necessary for what follows and is therefore not reproduced here.) These relations 
yield the explicit expression of the connection r in terms of g, 'T,  H and D: 

rap, = ( a ; 6 ~ )  + Q , ~ ,  - K ~ ~ ,  

(spy) [CY&] +Cap, (Levi-Civita or Riemannian connection) 

[a,!?yl = C(e(,)(g,p)) = +[ayp] 

Cap, = C(D,,p) = -Cp., 

QapY = Z(TYap) = -ea., 
&pV C(H,,p) = +KaYp (non-metric part) 

(Christoffel symbol) 
(2.4) 

(non-holonomicity) 

(contorsion tensor) 

in which the symbol Z applied to a three-index object W,,p is defined as 

2 w J 4 a p )  = w,, + wp., - wwp,. (2.5) 

(In the natural basis e(,) a/ax@, the commutation coefficients D vanish, and so does 
the non-holonomicity C; on the other hand, in an orthonormal frame e@), the metric is 
constant and the Christoffel symbol [2&] vanishes.) It is important to emphasize that, to 
distinguish tensorial components in an orthonormal frame from those in an arbitrary one, 
the former will be surmounted by a caret. Thus, r,$, denotes the orthonormal components 
of the connection, whereas rapBp denotes arbitrary components. 

The various terms in the connection I' of (2.4) give rise to different covariant 
derivatives: (apu~y) generates the Riemannian (i.e. metric-compatible and torsion-free) 
covariant derivative, Fa#, = (a&)+ QvpY generates the Riemann-Cartan (i.e. metric- 
compatible) covariant derivative (with torsion), and the complete connection r takes into 
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account both the torsion T and the non-metricity H .  With the above conventions, they read, 
as exemplified on the tensor t tfi,e(”) @ e(@): 

Weyl spaces are defined as manifolds in which the non-metricity H,,p = geplw takes 
the special form H@.p = 2g,gA, where A ,  is a covariant vector field called the Weyl 
vector. The formalism (2.4) simplifies then, and Kagv reads 

K a ~ y  = g u g A y  + g a y A g  - g g y A a .  (2.7) 

In particular, the covariant derivatives of the metric tensor with respect to the operators V 
and e of (2.6) are related by 

gpvlp = gwv:p + % p d p  

which will play an important role in the conclusion. 

operation acting on the fields g,,, T,,, A,, D,,, and generated by a scalar field Q1: 

(2.8) 

In the context of Weyl spaces, a gauge transformation is defined as the following 

2 0  zLp = e  g,“ 

DLUp =‘e 20 . D+”,. 

(It should be noted that, originally, Weyl spaces were assumed to be torsion-free and 
were developed in the language of natural frames only. These restrictions, however, are 
unnecessary.) 

One proves easily from (2.4) and (2.7) that, under a gauge transformation, the connection 
r and the non-metricity transform as 

(2.10) 

The transformation (2.10) of the non-metricity implies that, if one defines a new covariant 
derivative, denoted by a semi-colon. as 

g,”;, = &“lP - 2glL”Ao (2.11) 
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it will satisfy 
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(2.12) 
This is the fundamental idea of the invariant formalism 171: one may dccide to abandon 

the conventional covariant derivative I of a tensor I = tlLve(”) 8 e(,), introduced in (2.6), 
and replace it by the ‘gauge-invariant’ covariant derivative 

2” 
g;qp = e g,w. 

t f iUip = tPvIp -nAptpu 
(2.13) 

in which n is the ‘weight’ o f t ,  namely the number such that the following holds under a 
gauge transformation: 

f P  - - e””t”,. (2.14) 

(Different tensors have, of course, different weights.) It follows from (2.13) and (2.14) that 
t’J’v;p satisfies 

t‘@,:p = en’tPv,p (2.15) 
which generalizes (2.12) to a tensor different from the metric. 

It is permissible to interpret (2.13) as saying that the appropriate covariant derivative 
of a tensor t in a Weyl space is the normal one minus a term proportional to the Weyl 
vector and to the tensor t undergoing differentiation. In other words, one may consider, as 
is done in the invariant formalism, that the non-mehicity affects the covariant derivative 
by subtraction of a term proportional to t and function of the Weyl vector. Similarly, one 
may adopt this procedure for spinors, and write for a two-component spinor U = u,8‘) the 
covariant derivative in a Weyl space as the normal one minus a term proportional to U: 

U,:, e(,)(u.) - I’b, ,~h - (nA, + ivKp)uo (2.16) 

where a component notation is understood as in (2.13), rbaF is the spin connection (defined 
in [7] and analysed in section 3), and (n, U) is the ‘weight’ of U,, i.e. the couple of numbers 
appearing in the transformation law 

(2.17) 

which defines a ‘gauge and phase transformation’ of a spinor U. By analogy with the 
behaviour of the Weyl vector A in (2.9), K~ is assumed to satisfy 

= e(p,(t”Y) t r@mptu, - P,P, - nAptw, 

, (nm+ivUI) 
U, = e  U, 

K; = K, + e(,)(*). (2.18) 

A detailed discussion on how the weight (n, v )  of a spinor U. is determined by the invariant 
formalism can be found in [7]. What we are going to investigate here, in section 3, is 
whether there exists a choice for (n, U) which makes (2.16) identical to our definition of 
the covariant derivative of a spinor introduced in parts I and II. 

It is important to emphasize that, by adopting (2.13) as the definition of the tensorial 
covariant derivative, as opposed to the conventional one denoted by I in (2.6), a radical 
departure has been taken from tensor calculus. The computational advantages of this change 
are outlined in [7], one of them being the covariant constancy of g,, with respect to the 
new covariant derivative, but computational ease is not our point of view here. In part I1 
of our formalism, we proved that our definition of the covariant derivative of a spinor field 
is compatible with conventional tensor calculus. It is therefore important to investigate 
in more detail the status of the invariant formalism, which employs a modified version of 
tensor calculus. This will be done in section 4 after establishing, in section 3, that the 
definition (2.16) for spinors is essentially equivalent to ours of parts I and U. 
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3. The spinorial covariant derivative of parts I and II compared with that of the 
invariant formalism 

In part 11, we considered the following definition of the covariant derivative Viu of the 
two-component spinor U = una(,) along the vector X :  

v,u = [ X ( U " )  - P"(x)u"lz(m, 
- 2Am,(X) = AAf i ; (X) (~p i ) ' "n  + ikq'" sdp;(X)S", (3.1) 

(ufiO)m = alPIPml 01 
n -  pn 

where AAp,~ and sdpp denote, respectively, the antisymmetric and .the symmetric parts 
of the spacetime connection Api in an orthonormal frame e(&), k is a free parameter, and 

is the Infeld-van der Waerden symbol [8,9]. The notation is the same as in part JI. 
In particular, the antisymmetric and the symmetric parts and SAp; of the connection 
are given in terms of the metric g, the contorsion Q ,  the non-holonomicity C. and the 
non-mehicity H by 

2'.4p = (rapp + rp&+) = [e@)k,p) - Hwp1e('" 
(3.2) = $(rap, - rpa,)e@) = I--e([,)(gpl,) + cCp, + e,p, + H~.pl ,Ie(~)  A 

which will be necessary later. 
In order to compare (3.1), (3.2) with the covariant derivative (2.16) provided by the 

invariant formalism, it is sufficient to restrict attention to the derivative along a vector field 
X which is a basic vector, say e@).  We obtain thus, by (3.1) and (3.2), 

v,u e V,# = Um[l&m) 

u m lli = ec&)(u") - Amniu" 
(3.3) - 4Jm nu . = - (r.. - rOph)(ufit)mn + +yq-fies + rOBS)Sm. 

" 4 u p  

^ ^  = 2rp;e(aFY)" - 1kH.b -Um 

where the last' line follows from the antisymmetry of up0, and the notation 11 has' been 
adopted for the covariant derivative of a spinor (in components), in order to distinguish 
it from the derivative I which applies to tensors. When, in (3.3), the connection r is 
substituted in terms of the metric-compatible connection and the non-metricity H ,  as in 
(2.4), the result reads 

~ " 1 , ;  = e(&)(u") + $ F p . ; ~ ( u ~ ; ) ' " ~ u ~  + $ ~ p ; l ~ ( u D ) m , u "  - $kHiBgum. (3.4) 

So far, all the equations are valid for a general connection. In the special case of a 
conformal connection, the non-metricity takes the value 

HW$ = 2Apqep (3.5) 

in an orthonormal frame. which enables one to simplify (3.4) as 

um1p =e(&") + ; i i p ; & ( ~ + ~ ) ' " ~ u ~  +Ap(u@)'",un - $kAium. . (3.6) 
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We are now ready to compare (3.6) with the definition (2.16) of the invariant formalism. 

reads, according to the invariant formalism, 
By virtue of (2.16), the covariant derivative of a spinor U = U@) of weight (n,  U) 

vu:, = e@)(%) - rbupvb - MpUa 
(3.7) 

The spin connection rba, is found by the invariant formalism [7] to be given in terms of 
the metric-compatible spin connection FbOp by 

M, = nA, + iw,. 

where z and denote, respectively, the gauge weight and the phase weight of the spinor 
metric. (In part II, the spinor metric, expressed in a spin frame above an orthonormal 
frame e@),  had its components denoted by E,&.) Therefore, as a result of (3.8), the covariant 
derivative (3.7) becomes 

(3.9) 

Moreover, in the invariant formalism [6], equation (3.4). the metric-compatible spin 

- b  
Un;g = e(,)(%) - n,Ub - AaU{aebUp]taUb + ( ~ K F  - Me) UO. 

connection fbo, has the expression 

in which paa, and Yub are, respectively, the metric-compatible p m  of the spacetime 
connection and the spinor metric in an arbitrary frame. Let us now use an orthonormal 
basis q p )  to simplify the calculations. 

In an orthonormal frame, both the spinor metric and the Infeld-van der Waerden symbols 
are constant, and therefore the metric-compatible spin connection FbOp of (3.10) becomes 

in which the antisymmetry of the metric-compatible spacetime connection in an orthonormal 
frame has been employed, as well as the definition (3.1) of udj. The covariant derivative 
(3.9) simplifies then and reads 

Uu;f = e@)(Ua) -~$pegp(&)b,tJb -~Ak(U&.g)buUb + ( iKf i  - Mp) Vu.  (3.12) 

In this form, the parallel with our definition (3.6) is obvious. The apparent discrepancy 
in sign between (3.6) and (3.12) arises from the fact that (3.12), based on [7], applies to the 
covariant spinor U = U$), whereas (3.6) applies to the contravariant spinor U = uyZ;(.,. 
There is thus no conflict. The only difference comes from the conformal term kA&'/2 in 
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(3.6) and ( K ~ j 2  - M&J. in (3.12). These last contributions also agree with one another 
provided 

Kp - 2Mj = kAp (3.13) 

which implies, after using the definitions (3.7) and (3.8) for Mj and Kp, that the weights 
(n,  U) of U,, and ( z ,  {) of the spinor metric must satisfy 

(2n - z + ~ ) A Q  + (Zv - <)iKj = 0. (3.14) 

For this equality to hold irrespectively of A and K ,  the necessary and sufficient condition 
on the weight (n,  v) of U, reads as 

Z(n. U) = (z - k, {). (3.15) 
. .  

Consequently, if the weight (n, U) is considered as determined by (3.15), as opposed to 
being imposed a priori by~the requirement (2.17) of gauge and phase invariance, the result 
(3.15) proves that it is always possible to ensure that the invariant formalism agrees with 
our definition (3.6). On the other hand, if one considers the weight asfuled by the invariant 
formalism, then (3.15) proves that the invariant formalism agrees with ours only for spinors 
of that particular weight (n, v )  given by (3.15). The consequences of this observation will 
now be analysed. 

4. Conclusion 

In this article, we compared the definition of the covariant derivative of a spinor provided 
by our framework [1,2] with that of the invariant formalism [7]. Each of these formalisms 
has an advantage over the other: Our method has the advantage of being valid in full 
generality, i.e. without restriction on the spacetime connection; on the other hand, the 
invariant formalism, valid only in Weyl spaces, is computationally very convenient since 
it leads to the adoption of alternative tensorial and spinorial covariant derivatives, (2.13) 
and (2.16), with respect to which the metric tensor and the spinor metric are covaiiantly 
constant, even in spite of the non-metricity present in Weyl spaces. This feature is one of 
the main reasons for introducing the invariant formalism. (See [7] for details.) From our 
point of view, however, computational convenience is not a decisive factor. 

Light is shed on the alternative tensorial covariant derivative of the invariant formalism 
by returning to the relationship between the conventional tensorial covariant derivative I 
and the (conventional) metric-compatible one : of (2.8). If one solves (2.8) for the metric- 
compatible covariant derivative, one finds 

g w : ,  = gPVlP - Z&L”A,. (4.1) 
, 

When compared with (2.1 I), this shows that the covariant derivative of the metric according 
to the invariant formalism coincides with the conventional metric-compatible derivative. It 
comes, therefore, as no surprise that the invariant formalism obtains a covariantly constant 
metric, since its notion of covariant derivative, when applied to the metric, is nothing more 
than the conventional metric-compatible part : of the total covariant derivative I. This last 
property, however, holds only for the derivative of the metric. In other words, for a general 
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tensor, it is not true that twv:p = t”,:,,, as it follows from (2.4). (2.6), and (2.13) since the 
term nAptP, does, in general, not drop out, so that ; and : are genuinely inequivalent. 

According to the result (3.15), it is always possible to choose the system of weights so 
that the invariant formalism agrees with ours, specialized to a Weyl space. It is important to 
emphasize, however, that our formalism has been proved [2] consistent with conventional 
tensor calculus in a general space, and thus in a Weyl space in particular. Therefore, 
when weights are selected according to (3.15), compatibility is not achieved with respect to 
the alternative tensorial covariant derivative (2.13). For consistency with the alternative 
definition (2.13), the weights must be selected according to the rules of the invariant 
formalism. petails are available in [7].) When the weights are then considered as fixed 
by the invariant formalism, the gauge and phase-invariant covariant derivative no longer 
agrees with ours for all types of spinors, but only for that subclass of spinors with weight 
(n ,  U) that happens to satisfy (3.15). 

This creates no difficulty or confusion: in Weyl spaces, one may either adopt, for 
computational ease, the invariant formalism, at the expense of having to use a modified 
version of tensor calculus; or one may opt for ow formalism, which retains conventional 
tensor calculus. It is possible also, in principle, to ‘mix’ the formalisms since the constraint 
(3.15) gives the necessary and sufficient condition for the ‘mixture’ to be self-consistent. 
Little, however, seems to be gained in such a ‘mixture’, which loses the advantages of 
either formalism. 

D J Hurley and M A  Vandyck 
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